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1. Introduction 
 
René Descartes initially stated his Rule of Signs – without any proof, however. 
Refer to Bartolozzi et al. [1]. Isaac Newton later restated the rule but thought the 
proof was too trivial to warrant a recording. Although the earliest known proof 

was by the French mathematician Jean-Paul de Gua de Malves, it was the 

German mathematician Carl Friedrich Gauss who showed that the difference 

between the number of sign changes and the number of positive roots of a 

polynomial is negative. Refer to Hosch [4].  
 
Consider a polynomial p(x) = p0x0 …+ pnxn (that is, with terms arranged by 
increasing powers of x) with real coefficients. Without further mention, we assume 
that the highest coefficient pn is non-zero.  
 
Descartes’ Rule of Signs states that the number of positive roots (counted with 
multiplicity) of p does not exceed the number of sign changes of the nonzero 
coefficients of p when arranged in the order p0, p1, p2, …., pn. More precisely, the 
rule states that the number of such sign changes minus the number of positive roots 
is a nonnegative even number.  
 
If Zpositive and S represent the number of positive roots of p and the number of sign 
changes in p respectively, then Descartes’ principle can be written concisely: 
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Theorem [Descartes’ Rule of signs] S – Zpositive

 = 2k, where k is a nonnegative 
integer.   
 
We again emphasise that zero coefficients are skipped when counting a sign 
change.  
 
A quick corollary of this result is that a polynomial with an odd number of sign 
changes has at least one positive root! 
 
We remark that the Descartes Rule is significant since it relates an 
easy-to-calculate quantity (coefficient sign changes) of a polynomial with a 
difficult-to-calculate quantity (the number of real roots). See Appendix for a 
very simple Python program that calculates the possible number of positive, 
negative, and zero roots of a given polynomial.  
 
In this article, we follow the arguments outlined by Levine [3]. Our addition to 
Levine’s work involves an expansion of and many minor corrections to the points 
and proofs made in his article. Section 2.1 uses a proof on a simple trinomial to 
illustrate the rule, while section 2.2 illustrates the intuition behind the rule with the 
help of graphs. The arguments for the proof will be given in two sections. In 
section 2.3, we will prove some preliminary results as well as simpler versions of 
the rule. In section 2.4, we will prove the rule itself. Section 2.5 explains the 
watertight nature of the rule of signs by showing its versatility. 
 
 
2. Analysis 
 
2.1. Using a Simple Polynomial to Illustrate the Rule 
 
Lemma 1 For arbitrary powers n > m > 0, consider a polynomial of the form  
1 − axm + bxn with real coefficients a and b. The number of positive roots and 
coefficient sign changes for the polynomial are given in the following table: 
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Coefficient inequalities Number of positive roots Number of sign changes 

i) a < 0 , b > 0 0 0 

ii) b < 0 1 1 

iii) min(b,1) > a > 0 0 2  

iv) a – 1 > b > 0 2 2 
 
The figure below gives the ranges of a and b being considered.  
 

 
 
Proof. For i) all the terms are positive and so the trinomial is positive for all x > 0, 
making a zero crossing impossible there. 
 
For ii) we rewrite the equation 
                                         
                                       1 − axm + bxn = 0  

 
as 
                       ​  ​ 1 − axm = − bxn. 
 
Since b < 0, we can rewrite the above equation as 
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                        ​ ​ 1 − axm = |b|xn. 
 
Dividing on both sides by xm , we get 
 

x–m − a = |b|xn–m. 
 

The meeting point/s, if any, of the two functions x–m − a and |b|xn–m is/are the roots 
of our original trinomial – if the trinomial has any real roots at all. The right hand 
side strictly increases and the left hand side strictly decreases in x > 0. So, there is 
at most one positive root. As x nears 0, the right hand side (red curve in the figure 
below) approaches zero and the left hand side (blue curve in the figure below) 
approaches ∞. As x tends to ∞, the left hand side approaches −a and the right hand 
side approaches ∞. Note that – a needn’t always be negative. 
 

 
 
Therefore, by continuity, the two curves cross in x > 0 and there is exactly one root. 
Recall that a function defined on the real line is deemed continuous if its graph can 
be drawn on a piece of paper without lifting the pen.  
 
For cases iii) and iv), noting that a > 0 and b > 0, we rewrite the equation 
 
​ ​ ​ ​ 0 = 1 − axm + bxn 
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as 
​ ​ ​ ​ axm = 1 + bxn 
 
and then divide by axm to get 
 
                                                                                          
                                                                                      . 
 
Again, the meeting point/s of the two functions a–1x–m + ba–1xn–m and y = 1 is/are the 
roots of our original trinomial, if the trinomial has any real roots at all.  
 
The values of x –m and x n–m in x > 0 can be summarized as 
 
 

For 0 < x <1, x –m > 1 x n–m < 1 

For x = 1, x –m = 1 x n–m  = 1 

For x > 1, x –m< 1 x n–m  > 1 

 
In the case of iii), since a is always between 0 and 1 and b is always greater than a, 
  

and        are both greater than 1. 
 
 For each of the three ranges (or values) of x given in the table above, the right 
hand side (black curve in the figure below) of 
 

​ ​ ​ ​  
  
is greater than 1 (red line in the figure below) in x > 0, and so the equality cannot 
be satisfied for x > 0. 
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For iv) we rewrite 
 

a – 1 > b 
as 
​ ​ ​ ​ a > b + 1 
 
and then divide by a to get (recall a is positive) 
 
​ ​ ​ ​ 1 >                +       . 
 
So, the right hand side (black curve in the figure below) of 
 
​ ​ ​ ​  
​ ​ ​ ​ ​ … a) 
 
 
is less than 1 for x = 1 and, as before, greater than 1 for both x approaching 0 and 
∞. So, the right hand side and y = 1 meet at at least two points. Consequently, the 
trinomial has at least two positive roots in case iv), one less than 1 and the other 
greater than 1. 
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To prove that the trinomial in iv) has exactly two roots, we could show that the 
right hand side models a convex curve in x > 0. In loose terms, a convex curve is 
one that curves or ‘looks’ upward from the x axis. Showing this helps because a 
convex curve and a line can intersect at at most two points. Note that we have 
already shown that there are at least two intersections. 
 
The curve  

​ ​  
 
has the first derivative  
 

​ ​ ​  
 
and the second derivative 
 
​ ​ . 
 
Scrutinizing the second derivative in x > 0, since m is positive and lesser than n, the 
first coefficient is always positive and the second coefficient is either positive or 
zero; it’s zero in the case where n – m – 1 = 0. So, the second derivative is always 
positive. That is, the slope of the curve is always increasing. An increasing slope 
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signifies a convex function (here, in the domain x > 0). A convex curve and a line 
can intersect at most twice. To prove this by contradiction, let’s assume that a third 
positive root exists. This means that the curve would have to turn back toward the 
line and intersect it, decreasing its slope in doing so. However, the second 
derivative of the curve is nonnegative in x > 0, so a decreasing slope is not 
supported, hence our assumption is incorrect. So the equation in a) has to have at 
most two positive roots. Using previous results, we can conclude that the trinomial 
has exactly two positive roots in case iv). 
 
Note that the trinomial may not have the same number of positive roots as (a,b) 
varies over the region left unaccounted for by Lemma 1. Let us consider the region 
(a,b) such that a > 1 and a < b. This is the unshaded region above the line a = b. 
The trinomial q(x) = 1 − 2x4+ 5x5, the red curve in the figure below, with (a,b) in 
this region, has no positive roots. If instead we consider p(x) = 1 – 2x + 3x8, the 
blue curve below, it has two positive zeroes. The number of positive roots of a 
trinomial with (a,b) taken in this region clearly varies with (a,b). 
 

 
 
 
2.2. The Intuition behind Descartes's Rule of Signs 
 
i) Descartes’ Rule is plausible when we consider that each power of x dominates in 
a different region of x > 0, as seen below in the case of the polynomial,  
p(x) = – 4 – 2x3 + 3x6 – x8 + x10. 
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We’ll only consider p(x) in x > 0. 
 
ii) When x is very large, then the term with the highest power of x in p(x), say pnxn, 
dominates and the sign of p(x) is that of the leading coefficient pn.  
 
Here, pnxn = x10 is shown by the green curve in the figure below almost overlapping 
with p(x) (red) for all sufficiently large x > 0.   
 

 
 
The sign of pn = p10 (positive) is also taken up by p(x) in this range of x. Note that 
red and green never exactly overlap, they only meet when x = ∞. 
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iii) When x is very small, then the term with the lowest power of x, typically p0, 
rules.  
 
Here, p0 = –4 is shown by the purple line in the figure below almost overlapping 
with p(x) (red) for all sufficiently small x > 0.  
 

 
 
The sign of p0 (negative) is also taken up by p(x) in this range of x. Note again that 
red and purple never exactly overlap, they only meet when x is 0. 
 
iv) As we move right from the origin, each successive power of x comes into play.  
 
v) If the sign of the coefficient of the next power of x does not change, then the 
function continues the trend set by the previous power, trending towards negative 
values if the coefficient is negative or positive values if the coefficient is positive.  
Let the previous term be – 4 (purple in the figure below). For p(x), the ‘new term’ 
is – 2x3, and y = – 4 – 2x3 is shown by the figure below. 
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The graph is tending toward negative values in x > 0. A similar method can be used 
to show a graph tending toward positive values. Note that the lead term – 2x3 
dominates for large x > 0, as given by ii). 
 
vi) Consequently, if there is to be a zero crossing, then there needs to be a sign 
change in coefficients.  
 
p(x) next adds + 3x6, creating a sign change. The polynomial  
y = – 4 – 2x3 + 3x6 is shown in the figure below. 
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Clearly, we now have a zero crossing. Here too, the lead term + 3x6 dominates for 
large x > 0.  
 
vii) If there is a sign change but there isn’t still a zero crossing, as shown by y = – 4 
– 2x3 + 3x6 – x8 in the figure below, then we must have turned away from the x axis 
due to another sign change (here, due to the – x8 cancelling out the sign change 
induced by + 3x6, creating a U-turn away from the positive x axis). Here as well, 
the lead term – x8 dominates for large x > 0. 
 

 
 
We will now need to switch signs again to head back towards the x axis, so 
introducing + x10 into y, giving y = – 4 – 2x3 + 3x6 – x8 + x10, which is p(x) as shown 
previously in i). 
 
In going from y = – 4 to p(x) = – 4 – 2x3 + 3x6 – x8 + x10 , by successively adding 
each higher power, the leading term (– 4, – 2x3, + 3x6, – x8, and + x10 respectively) 
of each stage can be thought of as dominating the magnitude and sign of its 
corresponding stage for large x > 0, as in point ii). For such a domination to occur, 
the polynomial will have to reverse the trend of its previous path if the signs of the 
previously dominant term, say, + 3x6, and the newly dominant term, – x8, don’t 
agree. That is, each sign change produces a path change in the graph. 
 
Now, this turning/path change can occur before the graph has hit the +x axis as in 
vii) or as in f(x) = – 12 + 6x – x2 (red curve in the figure below). Else, the turn can 
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occur after the graph has hit the x axis as in q(x) = – 6 + 6x – x2 (black curve in the 
figure below). Both polynomials have two sign changes but only the latter results 
in two positive roots, while the former has zero positive roots, further illustrating 
why sign changes must be dropped in pairs.  
 

 
 
In short, a pair of consecutive sign changes either causes two positive roots or none 
at all.  
 
2.3. Preliminaries 
 
Remark 1 We may take the leading coefficient pn of the polynomial p to be unity 
without loss of generality.  
 
Multiplying or dividing p by any nonzero real number affects neither the location 
and number of sign changes in its coefficients nor the location and number of its 
roots. We will continue to employ the symbol pn when it helps simplify the 
notation.  
 
Remark 2 We can safely assume the constant term p0 is nonzero, i.e. the 
polynomial has no zero roots.  
 

 
13 



14 

Removing any common factors of x does not change the number of positive (or 
negative) roots, but just reduces the number of zero roots, which we are not 
interested in. 
 
Points ii) and iii) from section 2.2 (Intuition of the rule) are proved below.  
 
Result 1 For all sufficiently small x > 0, the sign of a polynomial p(x) matches the 
sign of its trailing coefficient. 
 
Proof. We write 
 

p(x) = p0+ p1x + … + pn xn. 
 

p(x) = p0 at x = 0 and the sign of p0 dominates p(x). For small x > 0, p(x) agrees in 
sign with p0. Hence, the trailing coefficient of p, p0, dominates in this range of 
sufficiently small x > 0. Precisely, the range  

 
smallest positive real root of p = s > x > 0  
 

is the range of all sufficiently small x > 0 for which the sign of the trailing term 
determines the sign of p. 
 
Result 2 For all sufficiently large x > 0, the sign of p matches the sign of its 
leading coefficient.  
 
Proof. Factoring out pnxn,  
 
 
       p(x)  =​ ​  
 
 
To retain the sign of pn, the terms within the parentheses must sum to a positive 
value for all sufficiently large x > 0. Let’s prove that they do so. 
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The terms in the parentheses of p(x) can be written as 
 
​ ​ ​ ​ ​ ( { m } + 1 ),  
 
where the content in the curly-brackets is abbreviated as m. 
 
When x = ∞, { m } is 0 and hence, ( { m } + 1 ) equals 1. As x decreases from ∞ in 
x > 0, p(x) maintains the sign of pn until p(x) touches (if at all) the x axis for the 
first time (i.e., where p(s) = 0 for some positive s). The range  

 
largest positive real root of p = s < x < ∞  
 

is hence the range of all sufficiently large x > 0 for which the sign of the leading 
term determines the sign of p. 
 
Proposition 1 If all the nonzero coefficients of p agree in sign, then it has no 
positive roots.  
 
Proof. If all the non-zero coefficients are positive, p is a sum of positive terms for 
any x > 0 and so cannot equal zero there. A similar argument holds if all the 
non-zero coefficients are negative. 
 
Corollary 1 If all the coefficients of p are nonzero and alternate in sign, then p has 
no negative roots.  
 
Proof. p(−x) has all coefficients agreeing in sign, hence Proposition 1 applies. So, 
p(−x) has no positive roots. That is, p has no negative roots. 
 
Note: For this proof, it’s important that all coefficients in p(x) are nonzero. For 
example, the proof doesn’t hold for p(x) = – 1 + 5x – 5x3 (figure below), although 
the coefficients have alternating signs. 
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Corollary 2 If a polynomial p with an even number of consecutive zero coefficients 
has alternating signs in the nonzero coefficients, then it has no negative roots. 
 
Proof. The two nonzero coefficients on either side of a zero coefficient block have 
powers of x that are of differing parity due to the fact that this zero coefficient 
block has an even number of elements. Hence, p(–x) has all coefficients agreeing in 
sign, hence Proposition 1 applies and we can conclude as in corollary 1. 
 
The next proposition uses proof by induction. Mathematical induction involves 
showing the validity of an assertion for any natural number (here, the statement of 
the proposition) via a three-step proof. Mathematical induction can be executed in 
the following general format: 
 
Hypothesis: Statement P(n) holds where n is any natural number (here, the set of 
natural numbers includes zero). 
Steps of Proof.  

1) Base case: Show that P(0) holds 
2) Inductive step: Show that P(k + 1) holds given that P(k) holds 
3) Conclusion: Since both the base case and the inductive step have been 

proven, by mathematical induction the statement P(n) holds for every natural 
number n. 
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Proposition 2 If a polynomial p of degree n has n positive roots, then its 
coefficients are all nonzero and the signs of the coefficients of p alternate.  
 
Proof. We proceed by induction on n.  

1)​ Base case: We can have two base cases. First, for n = 0 there are no roots 
and no sign changes. Second, for n = 1, we write p(x) as ax + b. Since p has 
one positive root, p(x) = ax + b = 0 and x = . Since x is positive, b − 𝑏 ÷ 𝑎
and a must both be non-zero and differ in sign. 
 

2)​ Inductive step: Assuming that the proposition holds for any polynomial of 
degree n − 1 having n – 1 positive roots, we show that it’s true for a 
polynomial of degree n having n positive roots.  
 
Proof. Thanks to the inductive step, a polynomial of degree n – 1 having n – 
1 positive roots can be written as (with all pj’s positive) 

 
 
 
 
 
Therefore, a polynomial p of degree n having n positive roots may be written 
as the product  
 

​ ​ ​  
 
with α and all pj positive. Here, α is the nth positive root of the polynomial p. 

 
Taking j = 0, 1,..., n – 2, n – 1 and writing out the summation term, we get  

 
p(x)      = 

 
​ ​ ​                                                                             .  
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Multiplying ( x – α ) into each square bracket term gives 
 

p(x)    = 
 
 
 
 
 
 
 
 

The terms with the same power of x can now be grouped together. The first 
term, (–1)n αp0, and the last term, (–1)0 pn –1 xn, are the only stand-alone 
terms. So the polynomial of degree n having n positive roots can be 
rewritten as 

 
 

p(x)   = 
 
 
In the summation block, ( – 1 )n – j is the part that decides the sign of the 
coefficient as pj , α are positive terms.  

 
Hence, the polynomial of degree n having n positive roots also has nonzero 
coefficients with alternating signs.  

 
3)​ Conclusion: Since both the base case and the inductive step have been 

proven, by mathematical induction the proposition holds for every natural 
number n. 
 

Corollary 3 If a polynomial p of degree n has n negative roots, then its coefficients 
are all nonzero and agree in sign.  
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Proof. We apply Proposition 2 to the polynomial p(−x). Hence, p(–x) has n 
positive roots and by Proposition 2, all its coefficients are nonzero and have 
alternating signs. So, all of the coefficients of p(–(–x))= p(x) are nonzero and agree 
in sign. 
 
Proposition 3 If there is exactly one sign change in the coefficients, then p has at 
least one positive root.  
 
Proof. By Result 1 the sign of p0 determines the sign of p(x) for sufficiently small x 
and by Result 2 the sign of pn determines the sign of p(x) for sufficiently large x. 
Since the coefficients have exactly one sign change, p0 and pn disagree in sign. 
Therefore p(x) has a different sign near 0 and infinity. By continuity, p(x) = 0 for 
some x > 0.  
 
Using an argument from the days before calculus was invented, we now show that 
there is exactly one positive root if there is exactly one coefficient sign change.  
 
We start with a simple observation on                          : 
 
 
Observation 1  
Let φ0(x) = 0, φk(x) = φk−1(x) + xk−1 for k = 1, . . . . , and x>0. 
 
Then φk(x) satisfies a relation:  

φm(x) > φk(x) for m > k when x > 0.  
 
Proposition 4 If there is exactly one sign change in the coefficients, then p has 
exactly one positive root.  
 
Proof. By Proposition 3, there is at least one positive root. Let α > 0 be the 
smallest and form the polynomial f(x) = p(αx). Note that f has degree n. The 
coefficients of this new polynomial have the same signs as the original and the 
smallest positive root is shifted to x = 1. 
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Clearly, f also has exactly one coefficient sign change. Let’s say that the last k 
terms of f have non-negative signs (some of these terms could be zero), and the 
first n – k + 1 terms have a non-positive sign (some of these terms could be zero). 
 
We now show that f is non-zero when x is not equal to 1 and hence that x = 1 is a 
simple root for f. In doing so, we show that α is a simple root of p. 
 
Splitting the positive and negative terms out, we write f(x) = q(x) − r(x), where the 
polynomials q and r have nonnegative coefficients. Factoring, we have 
(remembering that f (1) = 0) 
 

 
 
and after regrouping terms, we get (for x ≠ 1) 
 

 
 
 

 
                                                                                                            . 
​                                                                                                            
 
 
By Observation 1, 
 
       
 
and so 
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and hence we have shown that 
 
​                                                                                                
 

  
   = (x – 1) s(x) . 

 
We now show that s(x) is positive for all x > 0, and thus x = 1 is a simple root of 
f(x). 
 
Given that n ≥ j ≥ n – k + 1, by Observation 1, 
       ​ ​ ​ ​      
​ ​ ​ ​ ​ Φj (x) ≥ Φn – k + 1(x) > 0. 
 
Hence, 

​  
 

We do not have a strict inequality above as j could equal n – k + 1 or k maybe 1! In 
these cases, the expressions on either side equal each other. 
 
Given that                      , by Observation 1, 
 
​ ​ ​ ​ ​                                             . 
 
Hence, 
 
​ ​ ​  
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Adding (i) and (ii), we get for any x > 0, 
 
​ ​ ​  
 
​ ​ ​ ​  

​ ​ ​ ​  
 
 We conclude therefore that f(x) and hence p(x) has exactly one positive root. 
 
2.4. The Proof of Descartes’ Rule of Signs 
 
Lemma 2 If a polynomial q exhibits m coefficient sign changes, then for any α > 0, 
the polynomial p(x) = (x−α)q(x) exhibits at least m + 1 sign changes.  
 
Proof. Let the degree of q(x) be n. q(x) can be represented as 

 
 

                    . 
 
Then, p(x) = (x−α)q(x) can be written as                                                                          
​ ​                                                                                            
                                                                                                              
                      p(x)  =  
 
                                                                                                                            . 
           
After regrouping terms based on powers of x,  
 
 
                    p(x)   = 
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​ ​            
​ ​          =                                                                          . 
​  ​                                                                                 
​  
This says that pn+1 = qn and hence both have the same sign.  
 
We will call qk a sign-change coefficient if  
 
i) qk is non-zero,  
ii) there exists k* > k such that qk* has the opposite sign to qk and  
iii) qj = 0 for k + 1 ≤ j ≤ k* – 1. 
 
Let qm (necessarily, m < n) be the first sign-change coefficient as we come down 
from qn. From the formula pm+1 = qm− αqm+1 we obtain that pm+1 and qm agree in 
sign. Since pn+1 and qn have the same sign, and qm and pn+1 have opposite signs, we 
get that there is at least one sign change in the coefficients pj as j ranges from m + 1 
to n + 1.  
 
The same reasoning can be applied to any two successive sign change coefficients 
qk and qm to conclude that pk+1 and pm+1 have the same signs respectively, and hence 
there must be at least one sign change in the coefficients pj as j ranges from k to m. 
Thus there are at least as many sign changes in p as there are in q. 
 
Let qδ denote the last sign-change coefficient. Clearly δ ≥ 0. Without loss of 
generality let us assume qδ > 0 (a similar argument works if the sign of qδ is 
reversed). This means  pδ+1 = qδ − α qδ +1 > 0 and all qj for 0 ≤ j ≤ δ – 1 are 
non-negative. We get that p0 = − αq0 < 0 (recall the standing assumption that the 
zeroeth coefficient is non-zero). Hence there is one more sign change from pδ+1 to 
p0. 
 
Putting all the arguments above together, there is at least one more sign change in 
coefficients of p than those of q. 
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Corollary 4 A polynomial p with k positive roots has at least k coefficient sign 
changes.  
 
Proof. We proceed by induction on k. 

1)​ Base case: For k = 1, the result is immediate since if the polynomial has zero 
coefficient sign changes, i.e., if coefficients are both nonnegative or 
nonpositive, then it cannot have a positive zero. Note that at least one of 
them (the top coefficient) has to be non-zero by our assumption at the 
beginning. 
 

2)​ Inductive step: We assume that any polynomial with k – 1 positive roots has 
at least k – 1 sign changes and show that a polynomial p with k positive roots 
has at least k sign changes.  
 
We write p(x)=(x − α)q(x), where α > 0 is a root of p. Since we know that p 
has k positive roots, q is a polynomial with k – 1 positive roots and by 
inductive step 2) it has at least k – 1 sign changes. By Lemma 2, p has at 
least k sign changes.  

 
3)​ Conclusion: Since both the base case and the inductive step have been 

proven, by mathematical induction the statement P(k) holds for every natural 
number k. 

 
Corollary 5 A polynomial with k positive roots has more than k nonzero 
coefficients. 
 
Proof. By Corollary 4, a polynomial with k positive roots has at least k sign 
changes, hence at least k + 1 coefficients for the sign changes to occur between.  
 
Corollary 4 hence proves the first part of Descartes’ Rule of Signs. 
 
Theorem 1 [Descartes’ Rule of Signs—I ] The number of positive roots of a 
polynomial p with real coefficients does not exceed the number of sign changes of 
its coefficients.  
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To show further that the difference between the number of sign changes and the 
numbers of roots is even, we employ a cute observation on parity:  
 
Proposition 5 [Parity] The parity, i.e. the remainder upon division by 2, of the 
number of sign changes in a sequence of nonzero real numbers sj, j = 0, ... , n is 
equal to the number of sign changes in the two element subsequence s0sn.  
 
Proof. Let σj be the sign of sj. Then the ratio σj /σj + 1 is −1 at each sign change and 1 
otherwise.  
 
Therefore,  
 
​ ​ ​  
​ ​ ​ . 
 
 
 
But since  
 
​ ​                                                                                           , 
​ ​                                                                                                   
 
                                                                                  .             
                                                                                                 
 
This says that the difference between the number of sign changes in the whole 
sequence and the number of sign changes (i.e. 0 or 1) in the subsequence s0sn is an 
even nonnegative integer. Or, that the remainder upon division by 2, of the number 
of sign changes in the sequence of nonzero real numbers {sj}, is equal to the 
number of sign changes in the two element subsequence s0sn.  
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Lemma 3 If a polynomial q with real coefficients exhibits m sign changes, then for 
any α > 0, the polynomial p(x)=(x − α)q(x) exhibits m +1 + 2l sign changes for 
some integer l ≥ 0. 
 
Proof. By Lemma 2, p has at least m + 1 sign changes.  
 
We apply proposition 5 to the coefficients of p(x). Only all the nonzero coefficients 
of p are put into the sequence {sj}. Then, proposition 5 can be applied to this 
sequence of coefficients. The signs of s0 and sn are the signs of the trailing and 
leading coefficients respectively. The signs of the trailing and leading coefficients 
don’t change. Proposition 5 says that the sign changes between the first and last 
terms must be dropped in pairs given that the signs of the trailing and leading 
coefficients are constant. Hence, p has m + 1 + 2l sign changes for some integer l ≥ 
0.  
 
Theorem 2 [Descartes’ Rule of Signs—II ] The number of positive roots of a 
polynomial p with real coefficients does not exceed the number of sign changes of 
its coefficients and differs from it by a nonnegative multiple of two.  
 
Proof. By Corollary 4, the number of positive roots in p doesn’t exceed the number 
of sign changes in its coefficients. And, by Lemma 3, the difference between the 
number of sign changes in p and the number of positive roots it has is a 
nonnegative multiple of two. 
 
2.5. Working Backward 
 
Given a polynomial p, we have seen how to deduce  
 
i) The number of sign changes, S, of p 
ii) The sign sequence {sj} of the coefficients of p, from which i) can be determined 
iii) The possible number of positive roots (of p) that can be determined using the 
rule of signs when either S or {sj} is given. 
 
Note that sj is zero when the corresponding coefficient in p is zero. 
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In working backward, we are given a sign sequence {sj} with n elements from 
which we can calculate S as in i). We are then asked to find a polynomial whose 
coefficients have signs matching {sj} (in particular the polynomial is of degree n) 
and the number of positive zeros of the polynomial is any element in the set  
 

え = {S, S – 2, S – 4, ..., S0}, where S0 = 1 when S is odd and S0 = 0 when S 
is even. 
 
Note that え is the set of all possible counts of positive zeros of a polynomial with 
S sign changes allowed by the Rule of Signs. 
 
Grabiner [2] proves that this can indeed be done. 
 
Let's illustrate Grabiner’s [2] conclusion better. Let the class of all polynomials be 
denoted by . We’ll define the map F from to the set of nonnegative even 足 足

integers as  
 
                                             F(p) = S – Zpositive,  
 
where Zpositive is any element from え. 
 
When given some {sj} with n elements, we can calculate S as in i). In the diagram 
below, there exist subsets ท and ሙ of where ท consists of all polynomials of 足,  
degree n and ሙ all polynomials of degree n having a coefficient signs matching 
the sequence {sj}. Within ሙ, different choices of the magnitudes of the 
coefficients will produce different p’s having differing number of positive roots. 
Grabiner [2] constructs for each element in え a polynomial in ሙ having that 
many number of positive roots. The curly brackets indicate the range of F(pi); pi is 
a polynomial with S – S0 positive roots.  
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From this work by Grabiner [2], it follows that the range of F equals all the 
nonnegative even numbers! This neatly shows that Descartes’ Rule of Signs cannot 
be further narrowed down or refined. 
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Appendix  
 
The code below calculates the possible number of positive, negative, and zero roots 
when given a polynomial with its coefficients ordered by powers of x.  
 
#returns the number of sign changes in a given polynomial 
 
def SignChanges(coef = [], *args):   
 S=0 
 for i in range(len(coef)-1): 
   check = (coef[i])*(coef[i+1]) 
   if check < 0: 
     S+=1 
   else: 
     pass 
 return S 
 
#prints number of possible positive, negative, and zero roots 
  
def NumberOfZeroes(Sp,Sn,p):            
 print("The possible number of positive roots are:", end = " ") 
 l = int(Sp) 
 while (l != 0) and (l != 1): 
   print(l,",", end = "  ") 
   l -= 2 
 print(l) 
 print("The possible number of negative roots are:", end = " ") 
 m = int(Sn) 
 while (m != 0) and (m != 1): 
   print(m,",", end = "  ") 
   m -= 2 
 print(m) 
 Z = 0 
 print("The number of zero roots are:", end = " ") 
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 for i in p: 
   if i == 0: 
     Z += 1 
   else: 
     break 
 print(Z) 
  
p = [] 
q = [] 
n = int(input("enter the degree of the polynomial: ")) 
  
for x in range (n+1): 
 a = float(input("what's the coefficient of x^%d? " %(x))) 
 p.append(a) 
 if x%2 == 0: 
   q.append(a) 
 else: 
   q.append(-a) 
  
print(NumberOfZeroes(SignChanges(p) , SignChanges(q) , p)) 
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